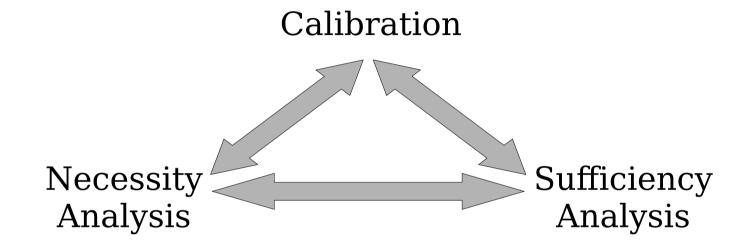
Qualitative Comparative Analysis: A Cross-Disciplinary Methodology for Studying Similarities and Differences

Claude Rubinson
University of Houston—Downtown
Houston, TX


qca@grundrisse.org http://grundrisse.org/qca/

UNAM October 17–21, 2025

Overview

- Day 1: The Logic of QCA
- Introductions and discussion of research projects
- Day 2: Three Analytic Components of QCA
- Calibration, Necessity Analysis, Sufficiency Analysis
- Day 3: Putting QCA into Practice
- Software for conducting QCA
- Day 4: Advances in QCA
- Time in QCA, Generalized Analytic Induction
- Day 5: Pulling it all Together
 - Building robust models, Visualizing and presenting QCA
- Discussion of research projects

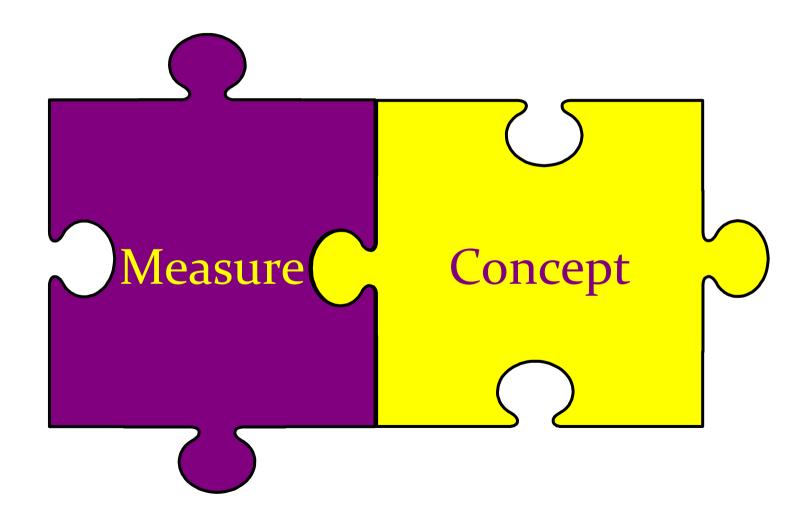
Three Analytic Components of QCA

Calibration

(with Roel Rutten, Tilburg University)

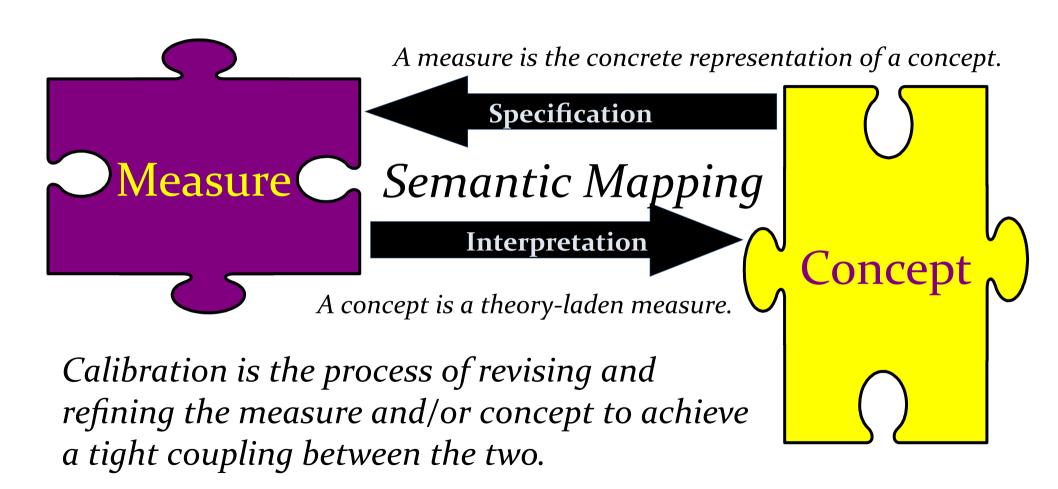
Uncalibrated measures, however, are clearly inferior to calibrated measures. With an uncalibrated measure of temperature, for example, it is possible to know that one object has a higher temperature than another or even that it has a higher temperature than average for a given set of objects but still not know whether it is hot or cold.

— Ragin (2008) *Redesigning Social Inquiry*

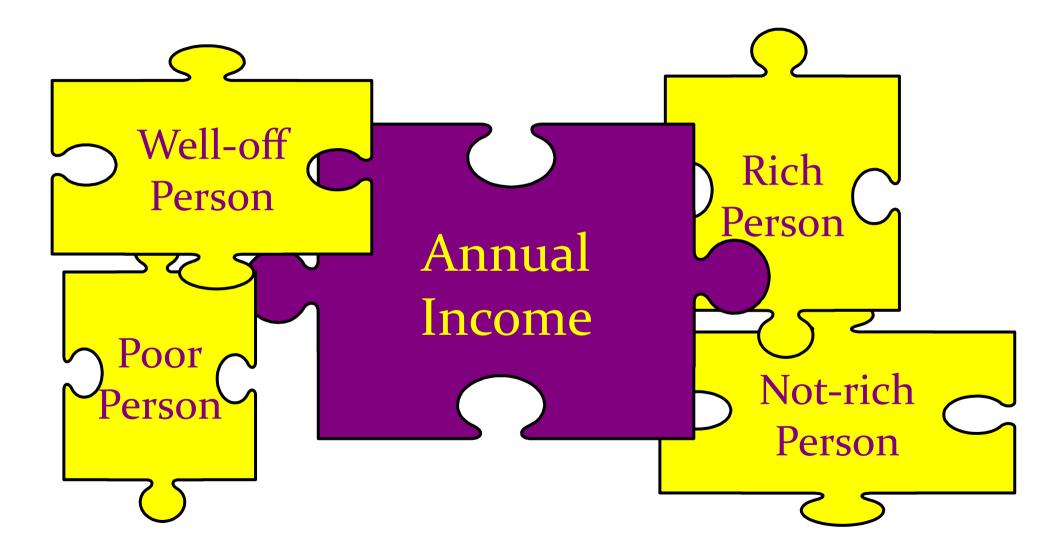

Calibration: What is calibration?

- The process of constructing fuzzy-sets
- May be crisp $\{0,1\}$ or fuzzy $\{0.0 \le x \le 1.0\}$
- Is about defining set memberships
 - degree of membership in the set of rich people (vs annual income)
 - degree of membership in the set of developed countries (vs GDP/capita)
- Importance of negation and asymmetry
 - degree of membership in the set of *not* rich people
 - degree of membership in the set of *not* developed countries

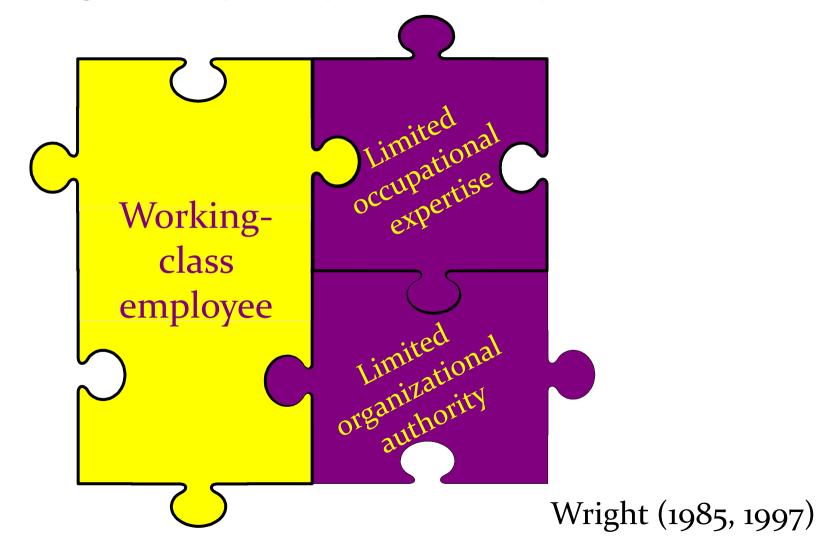
- QCA speaks of "conditions" rather than "variables." Why?
- *Variables* are nouns that measure magnitudes: Income measures how much a person earns.
- *Adjective phrases* describe a specific quality such as the "condition" of being rich. An adjective phrase describes a set: the set of rich people.
- QCA analyzes sets and set relationships.
- Therefore: QCA analyzes adjective phrases; i.e., "conditions."


- An adjective phrase qualifies a noun: "educated individual," "profitable company," "democratic country"
- Nouns may be complex:
- "Sci-fi film" vs "Hard sci-fi film" vs "Popular hard sci-fi film"
- A condition measures the degree to which the object (noun) exhibits the quality (adjective)
- Calibration is challenging b/c you must operationalize:

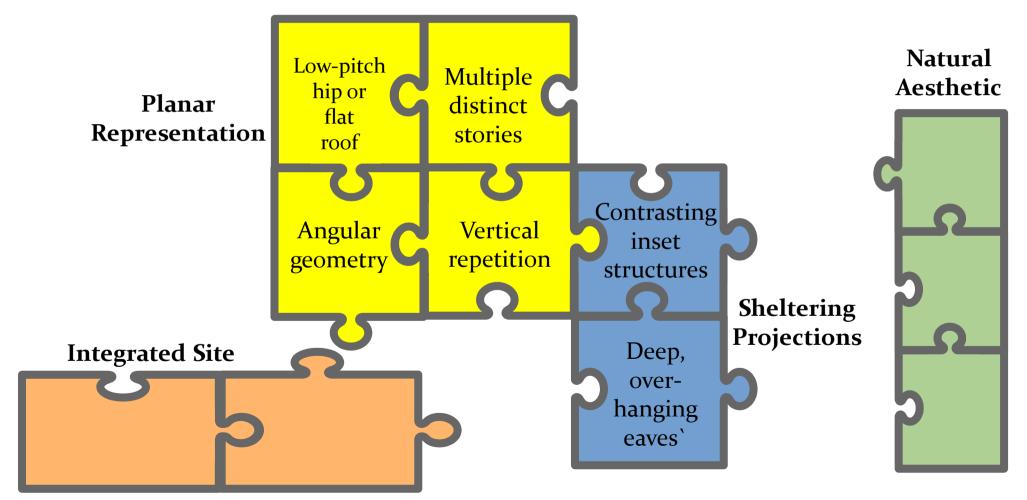
 (a) the object, (b) the quality, and (c) the expression of the quality by the object.



	Quality (Adjective)	Object (Noun)
Condition:	"Democratic	Country"
Ontological questions identify the concept:	What does it mean for a country to be democratic?	What is a country?
Epistemological questions identify the measure:	How do we assess the degree to which a country is democratic?	distinguish countries


Calibration: Achieving fit via iteration

Calibration: Single measure, multiple concepts



Calibration: Single concept composed of multiple measures

Calibration: Macroconditions are composed of multiple conditions

The Prairie Style Home

Calibration: Mapping Concepts to Measures

Three semantic thresholds common to all conditions:

- 1.0 = full membership (ideal-typical case)
- o.o = full non-membership (negative case)
- o.5 = crossover point (ambiguous case)

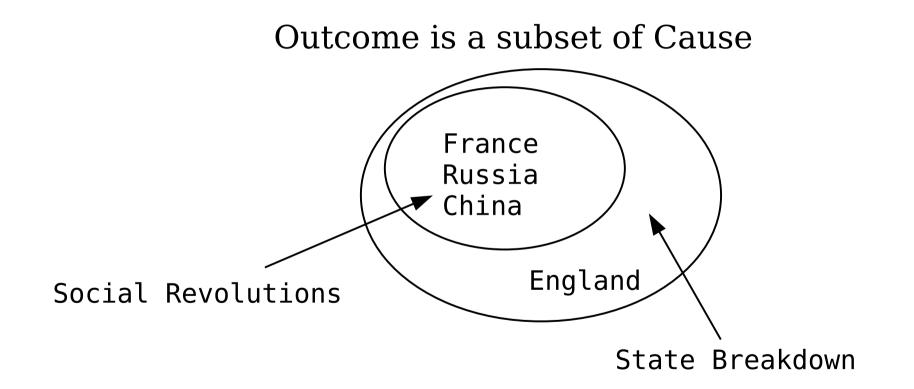
> 0.5 = typical case possesses enough characteristics to be recognizable as an instance of the case < 0.5 = atypical case possesses some characteristics but is not recognized as an instance of the case

Note: Crossover point is always implicit except when using the direct method of

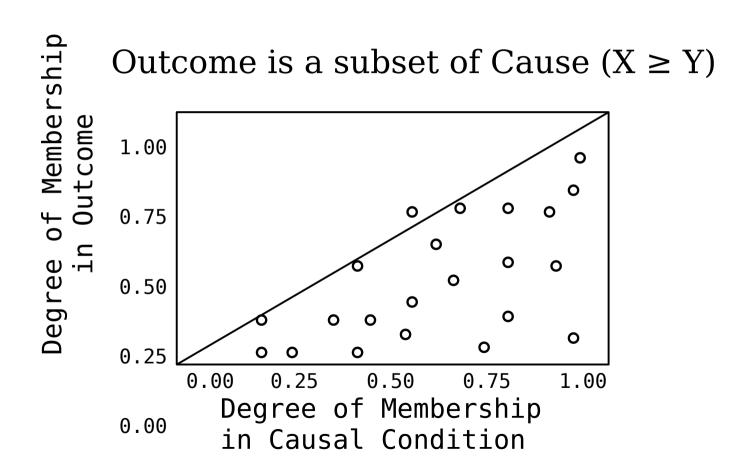
calibration.

- Including additional semantic thresholds is common (0.0, 0.25, 0.75, 1.0).
- Be aware of the danger of over-precision. Can you really distinguish 0.25 from 0.3?
- Consider irrelevant variation, both beyond *and within* the lower and upper bounds.
- - Successful calibration answers two questions:
 - 1. What does each semantic threshold mean ontologically? 2. What are the epistemological rules that produces each membership score?

Calibration: Types of Fuzzy Sets—Crisp, Discrete and Continuous


	Crisp set	Three-value fuzzy set	Four-value fuzzy set	Six-value fuzzy set	Continuous fuzzy set
		Ide	eal-typical o	case = Fully in	= 1.0
Typical cases (instances of the set)		More in than out = 0.7	More in than out = 0.7	Mostly but not fully in = 0.8 More or less in = 0.6	Degree of membership is more "in" than "out" 0.5 < X < 1
		Ambi	guous case =	Crossover Poin	t = 0.5
Atypical cases (non- instances of the set)			More out than in = 0.3	More or less out = 0.4 Mostly but not fully out = 0.2	Degree of membership is more "out" than "in" 0.0 < X < 0.5
		N	legative case	e = Fully out =	0.0

Analysis of Necessary and Sufficient Conditions Necessity analysis is underdeveloped in the literature;

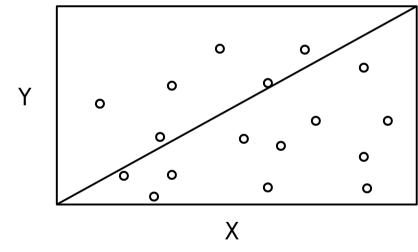

- QCA development—and applications—have focused on sufficiency
- Sufficiency analysis assumes causal complexity and emphasizes multiple conjunctural causation
- Intersectionality: combinations of conditions explain empirical phenomena
- Equifinality: different combinations of conditions can produce the same outcome
- Drimary massures of model fit.
- Primary measures of model fit:
 Consistency measures the strength of a superset/subset
 - relationship (a perfect subset relationship=1.0)
 Coverage measures the empirical importance of a particular solution (explaining all instances of the outcome=1.0)

Analyzing Necessary Conditions

Necessary Conditions: Cause must (almost always) be present for outcome to occur

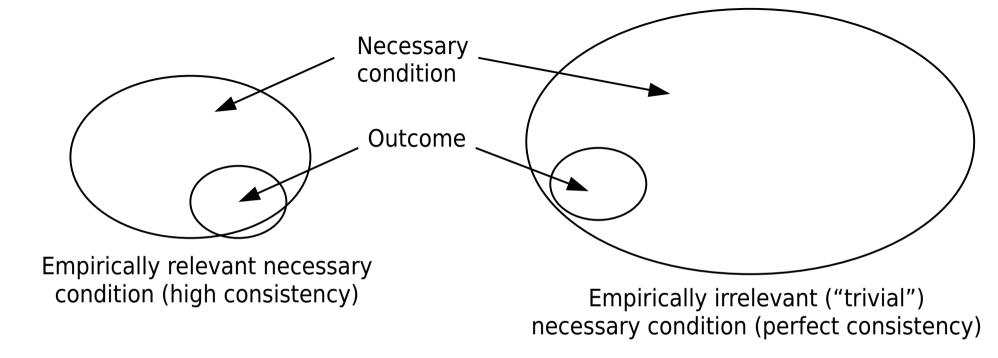


Fuzzy Subset Relationship Consistent with Necessity



Assessing Necessary Conditions

Consistency measures the degree to which the subset relationship is "consistent" with necessity



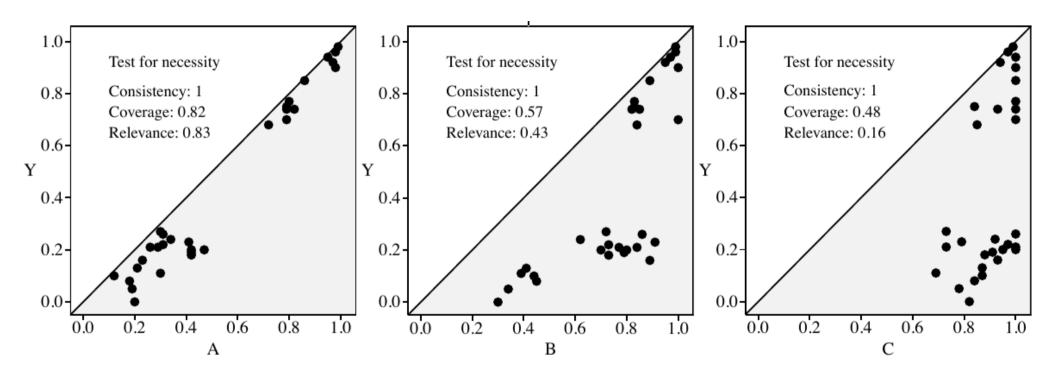
Subset relationship consistent with necessity

Subset relationship with substantial inconsistency

Assessing Necessary Conditions

- *Coverage* measures how "relevant" (empirically prominent) a necessary condition is
- Must establish consistency *before* assessing coverage
- Application of *theory* is crucial: What is the justification for claiming necessity?

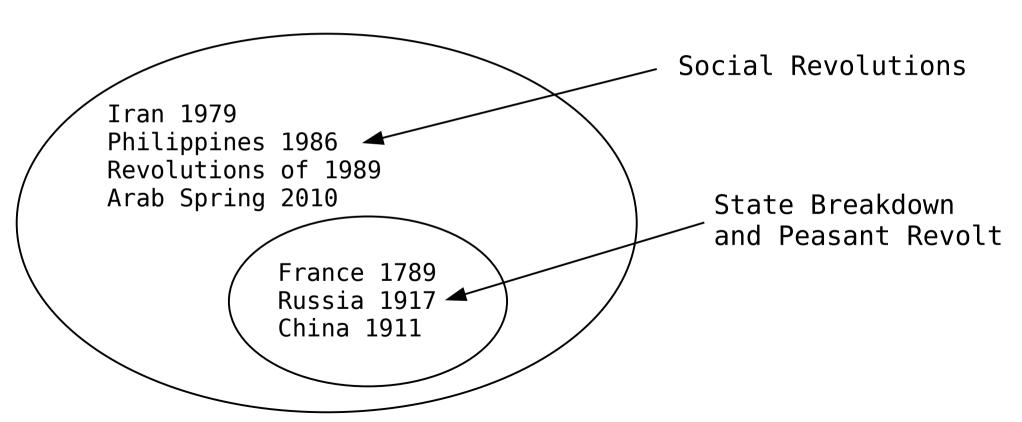
Testing for Necessary Conditions

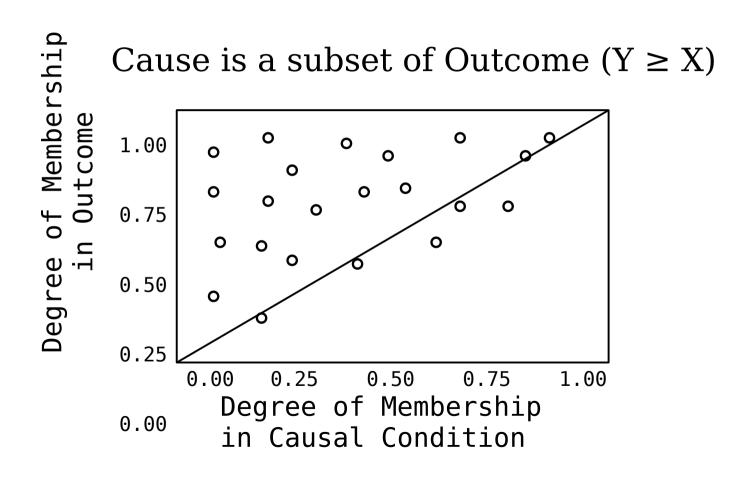

Obs	Dev	Urb	Lit	Sur	
AT	.81	.12	.99	.05	
BE	.99	.89	.98	.95	▼ 0.9 -
CZ	.58	.98	.98	.89	0.8 - 0.7 -
EE	.16	.07	.98	.12	.∪ 0.5 -
FI	.58	.03	.99	.77	HU 9.3 - HU
FR	.98	.03	.99	.95	OB- 0.8- 0.7- 0.6- 0.5- 0.3- 0.2- HU OR
DE	.89	.79	.99	.05	0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
GR	.04	.09	.13	.06	Membership in Set of Literate Countries
HU	.07	.16	.88	.42	
ΙE	.72	.05	.98	.92	Term Consis Cov
IT	.34	.10	.41	.05	LIT 0.99 0.58
NL	.98	1.00	.99	.95	
PL	.02	.17	.59	.12	Solution 0.99 0.58
PT	.01	.02	.01	.05	

Necessary Conditions: Consistency, Coverage and Trivialness

	Со	nditio	Outcome	
Obs	Α	В	С	Υ
1	0.9	1.0	1.0	0.9
2	8.0	1.0	1.0	0.7
3	0.3	0.7	1.0	0.2
4	0.4	8.0	0.9	0.2
5	0.1	0.2	8.0	0.0

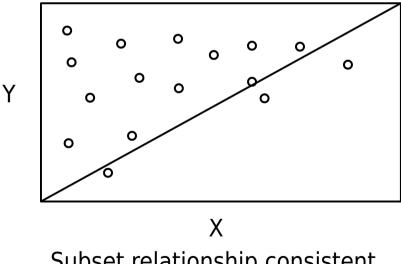
_									
	Test for Necessity								
	Consis Cov RoN								
Α	1.0	0.80	0.83						
В	1.0	0.54	0.43						
C	1.0	0.43	0.10						
_									


Necessary Conditions: Consistency, Coverage and Trivialness

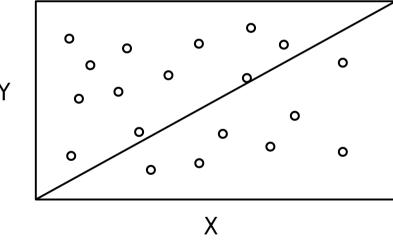

Analyzing Sufficient Conditions

Assessing Sufficient Conditions: When cause is present, outcome will (almost always) occur

Cause is a subset of the Outcome

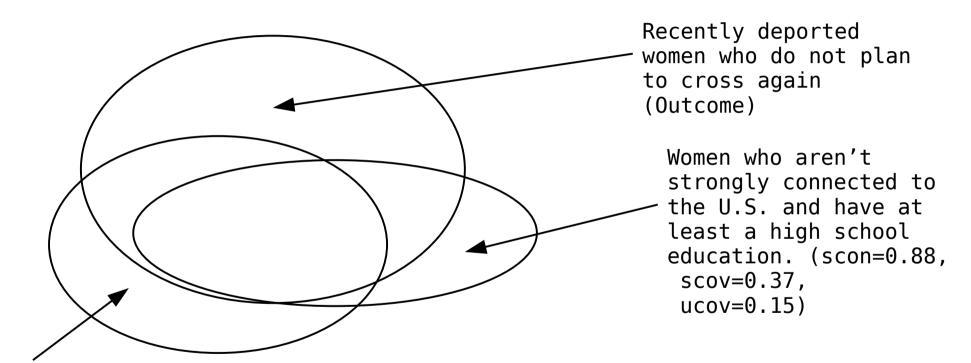


Fuzzy Subset Relationship Consistent with Sufficiency

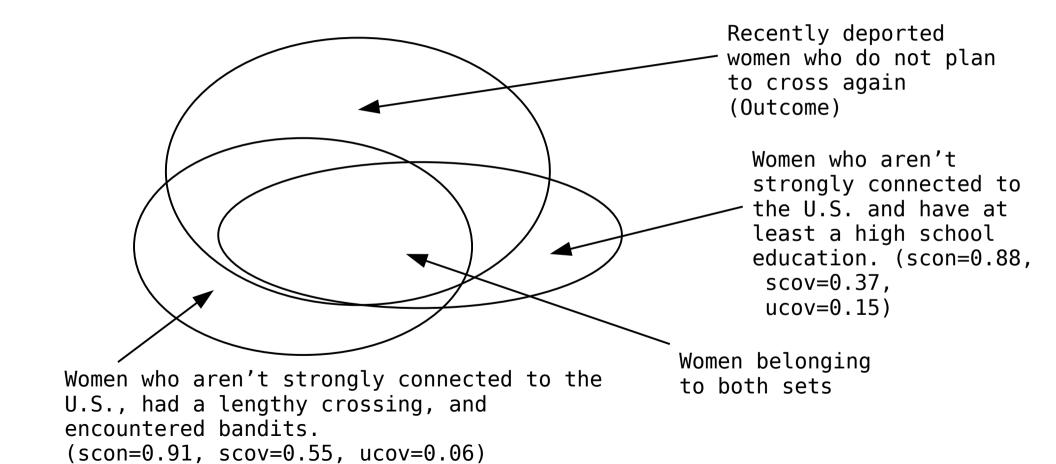


Assessing Sufficient Conditions

Consistency measures degree to which subset relationship is "consistent" with sufficiency



Subset relationship consistent with sufficiency


Subset relationship with substantial inconsistency

Assessing Sufficient Conditions: When cause is present, outcome will (almost always) occur

Women who aren't strongly connected to the U.S., had a lengthy crossing, and encountered bandits. (scon=0.91, scov=0.55, ucov=0.06)

Assessing Sufficient Conditions: When cause is present, outcome will (almost always) occur

Truth Table Construction Truth table algorithm sorts observations into types

Obs	Dev	Urb	Lit	Brk							
AT	.81	.12	.99	.95							
BE	.99	.89	.98	.05							
CZ	.58	.98	.98	.11							
EE	.16	.07	.98	.88		Dev	Urb	Lit	Consis	Y Consis Obs	Inconsis Obs
FI	.58	.03	.99	.23	1	Т	Т	Τ	0.41	F DE	BE, CZ, NL
FR	.98	.03	.99	.05	2	Т	Т	F	_	_	
DE	.89	.79	.99	.95	3	Т	F	Т	0.51	F AT	FI, FR, IE
GR	.04	.09	.13	.94		Т	F	F	_	_	
HU	.07	.16	.88	.58	4						
ΙE	.72	.05	.98	.08	5	F	Т	Т	_		
IT	.34	.10	.41	.95	6	F	Т	F	_	_	
NL	.98	1.00	.99	.05	7	F	F	Т	0.83	T EE, PL	HU
PL	.02	.17	.59	.88	8	F	F	F	0.99	T GR, IT, PT	
PT	.01	.02	.01	.95	Ü					. ,	

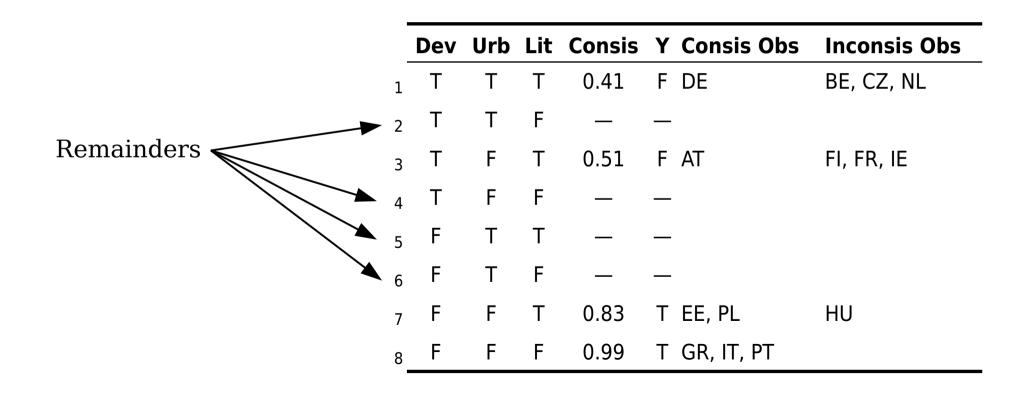
Truth Table Construction Truth table assesses consistency between types and outcome

Democracy usually did not break down in countries that were:

- (a) developed, urbanized, and literate (row 1), or
- (b) developed, not urbanized, and literate (row 3).

Democracy usually did break down in countries that were:

(c) not developed, not urbanized, and literate (row 7), or


(d) not developed, not

(row 8)

urbanized, and not literate

	Dev	Urb	Lit	Consis	Y	Consis Obs	Inconsis Obs
1	Т	Т	Т	0.41	F	DE	BE, CZ, NL
2	Т	Т	F	_	_		
3	Т	F	Т	0.51	F	AT	FI, FR, IE
4	Т	F	F	_	_		
5	F	Т	Т	_	_		
6	F	Т	F	_			
7	F	F	Т	0.83	Т	EE, PL	HU
8	F	F	F	0.99	Τ	GR, IT, PT	

Reading Truth Tables Remainders are logically-possible configurations w/o empirical instances

Invariance in Truth Tables

•	Dev	Urb	Consis	Y	Consis Obs	Inconsis Obs
1	Т	Т	0.41	F	DE	BE, CZ, NL
2	Т	F	0.51	F	AT	FI, FR, IE
3	F	Τ	_	_		
4	F	F	0.89	Т	EE, GR, IT, PL, PT	HU
_						•

_	Dev	Urb	Lit	Consis	Υ	Consis Obs	Inconsis Obs
1a	Т	Т	Т	0.41	F	DE	BE, CZ, NL
1b	Τ	Т	F	_	_		
2a	Т	F	Т	0.51	F	AT	FI, FR, IE
2b	Т	F	F	_			
3a	F	Т	Τ	_			
3b	F	Т	F	_			
4a	F	F	Т	0.83	Т	EE, PL	HU
4b	F	F	F	0.99	Т	GR, IT, PT	

To Primitive Expressions:

Term	Consis	Raw Cov	Uniq Cov	Observations
dev*urb*LIT +	0.83	0.42	0.27	EE, PL, [HU]
dev*urb*lit	0.99	0.40	0.24	GR, IT, PT
Solution	0.88	0.66		

To Primitive Expressions:

Term	Consis	Raw Cov	Uniq Cov	Observations
dev*urb*LIT +	0.83	0.42	0.27	EE, PL, [HU]
dev*urb*lit	0.99	0.40	0.24	GR, IT, PT
Solution	0.88	0.66		

To Prime Implicants:

Term	Consis	Raw Cov	Uniq Cov	Observations
dev*urb	0.89	0.71	0.71	EE, PL, GR, IT, PT, [HU]
Solution	0.89	0.71		

To Primitive Expressions:

Term	Consis	Raw Cov	Uniq Cov	Observations
dev*urb*LIT +	0.83	0.42	0.27	EE, PL, [HU]
dev*urb*lit	0.99	0.40	0.24	GR, IT, PT
Solution	0.88	0.66		

To Prime Implicants:

Term	Consis	Raw Cov	Uniq Cov	Observations
dev*urb	0.89	0.71	0.71	EE, PL, GR, IT, PT, [HU]
Solution	0.89	0.71		

Reduce Prime Implicants (Complex Solution):

Term	Consis	Raw Cov	Uniq Cov	Observations
dev*urb	0.89	0.71	0.71	EE, PL, GR, IT, PT, [HU]
Solution	0.89	0.71		

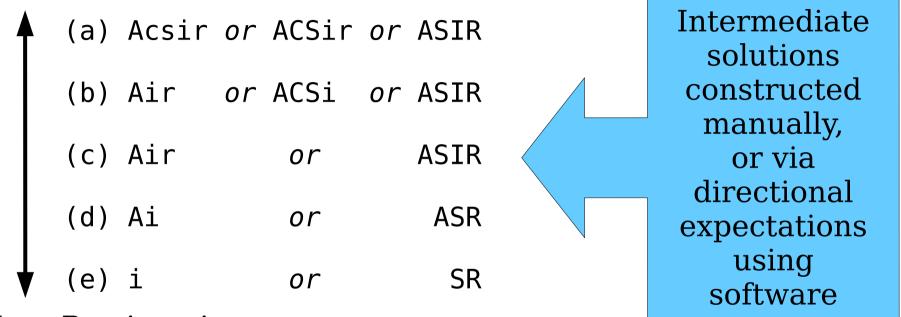
To Primitive Expressions:

Term	Consis	Raw Cov	Uniq Cov	Observations
dev*urb*LIT +	0.83	0.42	0.27	EE, PL, [HU]
dev*urb*lit	0.99	0.40	0.24	GR, IT, PT
Solution	0.88	0.66		

To Prime Implicants:

Term	Consis	Raw Cov	Uniq Cov	Observations
dev*urb	0.89	0.71	0.71	EE, PL, GR, IT, PT, [HU]
Solution	0.89	0.71		

Reduce Prime Implicants (Complex Solution):


Term	Consis	Raw Cov	Uniq Cov	Observations
dev*urb	0.89	0.71	0.71	EE, PL, GR, IT, PT, [HU]
Solution	0.89	0.71		

Reduce Prime Implicants Using Remainders (Parsimonious Solution):

Term	Consis	Raw Cov	Uniq Cov	Observations
dev	0.82	0.73	0.73	EE, PL, GR, IT, PT, [HU]
Solution	0.82	0.73		

A Range of Solutions are Possible

More Complex

More Parsimonious

Outcome: Successful shaming of targeted regimes

Explanatory conditions: (A) dvice, (C) ommittment, (S) hadow of the future, (I) nconvenience, (R) everberation

Factoring Results

```
Initial Solution:

ELECTIONS * POLICE +
urban * POLICE +
CONFLICT * ELECTIONS * URBAN +
CONFLICT * elections * urban +
conflict * ELECTIONS * urban
```

Factored Solution:

```
POLICE (ELECTIONS + urban) +
URBAN (CONFLICT * ELECTIONS) +
urban ((CONFLICT * elections) + (conflict * ELECTIONS)
```