

From R to Python to OCaml:
Set-Theoretic Analysis for

the (Social) Sciences

Claude Rubinson
University of Houston—Downtown

Houston Functional Programmers
Houston, Texas
May 17, 2017

cjr@grundrisse.org rubinsonc@uhd.edu

http://grundrisse.org/QCA/ http://gator.uhd.edu/~rubinsonc/

Overview
● Introduction to QCA
● History of QCA software
● First (mis-)steps in developing acq & Kirq: the

fsQCA package for R
● Second implementation: Python

– Benefits and limitations of Python
● Third implementation: OCaml

– Why OCaml?
– Initial benefits of OCaml and functional

programming
– Software architecture
– Unresolved issues

● A method of conducting social research
by analyzing subset relationships, using
Boolean algebra

What is Qualitative Comparative Analysis?

Set of
Political
Conservatives

Set of Religious
Fundamentalists

What is Qualitative Comparative Analysis?

● A method of conducting social research
by analyzing subset relationships, using
Boolean algebra

● Example: Religious fundamentalists
tend to be politically conservative.

What is Qualitative Comparative Analysis?

● A method of conducting social research
by analyzing subset relationships, using
Boolean algebra

● Example: Wealthy individuals tend to
come from privileged families.

Set of
People with
Rich Parents

Set of
Rich People

What is Qualitative Comparative Analysis?

● Particularly concerned with two types of
causal relationships: necessary
conditions and sufficient conditions

– Absence of necessary condition means
that outcome will (probably) not occur

– Presence of sufficient condition means
that outcome will occur, all or most of
the time

– Necessary and sufficient conditions
may be complex (“multiple
conjunctural causation”)

Set of people
with AIDS

Set of people
exposed to HIV

What is Qualitative Comparative Analysis?

● Necessary condition: cause must be
present for outcome to occur

● Example: Must be exposed to HIV to
contract AIDS

What is Qualitative Comparative Analysis?

Set of
women
with
miscarriage

● Sufficient condition: if cause occurs,
outcome will occur

● Example: Elective abortion or
miscarriage will terminate pregnancy

Set of
women
with
elective
abortion

Set of women with terminated pregnancy

Recently deported
women who do not
plan to cross again
(Outcome)

High SES women
who haven't
lived in the
U.S. and aren't
traveling with
family (X1)

High SES women who haven't lived in the U.S., have
only attempted cross a few times and felt that their
last crossing experience was very dangerous (X2)

What is Qualitative Comparative Analysis?

● Sufficient condition: if cause occurs,
outcome will occur

Recently deported
women who do not
plan to cross again
(Outcome)

High SES women
who haven't
lived in the
U.S. and aren't
traveling with
family (X1)

High SES women who haven't lived in the U.S., have
only attempted cross a few times and felt that their
last crossing experience was very dangerous (X2)

Women belonging
to sets X1 and X2

What is Qualitative Comparative Analysis?

● Sufficient condition: if cause occurs,
outcome will occur

● Challenges conventional statistical analysis,
which is based upon linear-additive model

● Complements other set-theoretic research
methods (e.g., SNA and QNA)

● Does not depend upon degrees of freedom,
so is useful for small-, medium-, and large-N
studies

● Encourages a research process that is
“retroductive” and “case-oriented”

What is Qualitative Comparative Analysis?

Truth Table with Contradiction (from Table 4 of Brown
and Boswell 1995)

Recent
Black

Migrants
Weak
Union

Black
Strikebreaking Observations

T T T East Chicago, Pittsburgh, Youngstown

T F Con Buffalo, Chicago, Gary, Johnstown, [Cleveland]

F T F Bethlehem, Joliet, McKeesport, Milwaukee, New
Castle, Reading

F F F Decatur, Wheeling

What is Qualitative Comparative Analysis?
Example: Brown and Boswell (1995)

Revised Truth Table without Contradiction (from Table 5 of
Brown and Boswell 1995)

Recent
Black

Migration
Weak
Union

Local Govt
Repression

Black
Strikebreaking Observations

T T T T East Chicago, Pittsburgh,
 Youngstown

T T F —

T F T T Buffalo, Chicago, Gary, Johnstown

T F F F Cleveland
F T T F Bethlehem, Joliet, McKeesport,

 New Castle, Reading
F T F F Milwaukee

F F T F Decatur
F F F F Wheeling

What is Qualitative Comparative Analysis?
Example: Brown and Boswell (1995)

Revised Truth Table without Contradiction (from Table 5 of
Brown and Boswell 1995)

Recent
Black

Migration
Weak
Union

Local Govt
Repression

Black
Strikebreaking Observations

T T T T East Chicago, Pittsburgh,
 Youngstown

T T F —
T F T T Buffalo, Chicago, Gary, Johnstown

T F F F Cleveland
F T T F Bethlehem, Joliet, McKeesport,

 New Castle, Reading
F T F F Milwaukee

F F T F Decatur
F F F F Wheeling

What is Qualitative Comparative Analysis?
Example: Brown and Boswell (1995)

Revised Truth Table without Contradiction (from Table 5 of
Brown and Boswell 1995)

Recent
Black

Migration
Weak
Union

Local Govt
Repression

Black
Strikebreaking Observations

T T T T East Chicago, Pittsburgh,
 Youngstown

T F T T Buffalo, Chicago, Gary, Johnstown

RBM * WU * LGR +
RBM * ~WU * LGR
 = Black Strikebreaking

What is Qualitative Comparative Analysis?
Example: Brown and Boswell (1995)

Revised Truth Table without Contradiction (from Table 5 of
Brown and Boswell 1995)

Recent
Black

Migration
Weak
Union

Local Govt
Repression

Black
Strikebreaking Observations

T T T T East Chicago, Pittsburgh,
 Youngstown

T F T T Buffalo, Chicago, Gary, Johnstown

RBM * WU * LGR +
RBM * ~WU * LGR
 = Black Strikebreaking

RBM * LGR = Black Strikebreaking

What is Qualitative Comparative Analysis?
Example: Brown and Boswell (1995)

Technical and Usability Challenges
● QCA algorithms are:

– NP-hard (no exact algebraic solution)

– O(2N) complexity, where N is number of
variables (not observations) in the data set

– but, because data sets tend to be small and
matrix algebra isn’t used, no need for high
performance numerical computation library

● How to maintain and encourage retroductive,
case-oriented research process?

● How to make software that's efficient,
useful, and usable?

fs/QCA
(Ragin, Drass, and Davey 2016)

TOSMANA
(Cronqvist 2016)

fuzzy (Stata)
(Longest and Vaisey 2008)

QCA
(Drass and Ragin 1992)

QCA3 (R)
(Huang 2016)

Kirq & acq
(Rubinson and Reichert 2014)

QCA (R)
(Dusa 2017)

QCApro (R)
(Thiem 2016)

History of QCA Software

Design Goals

● Software that is efficient, useful, and usable:

– Follow the Unix philosophy
– Crossplatform and user-friendly
– Support and encourage good QCA research

practices; facilitate close enagement with
cases and retroduction

– Support case-oriented and qualitative
research

● Also important:

– Good performance
– Avoid sucking up all of my time
– Fun!

fsQCA module for R
“Plan to throw one away; you will, anyhow”

● Cross-platform, but requires R
● Not user-friendly
● Too slow
● R programming “considered harmful”
● But: allowed me to realize that the user

interface should be task-oriented

Second Implementation: Python
● acq: QCA at the Unix commandline

– a “scratch my own itch” project
● Kirq: QCA for everybody else

– a user-friendly, crossplatform GUI program

Why Python?
● The surrounding ecosystem

– Ability to hire others

– Confidence that the supporting environment is
stable and will continue to be maintained

– Python is lingua franca in academia

– Rich environment for GUI toolkits, installers, etc.

– Chose Qt for GUI toolkit; PyInstaller for distribution

Lessons Learned
● acq is fewer lines of code than previous R module, and

faster

– compare to QCA module for R
● Less concern for performance means more attention to

functionality and user-interface issues
● Writing acq as Unix shell scripts helped me streamline the

QCA analysis; acq and Kirq make it easy to modify and
rerun analyses

● Easy to add new functionality to acq
● Have designed Kirq to facilitate interrogation and

comparisons of solutions
● Lots of GUI niceties, such as tooltips and pop-out windows

● Session history is Kirq's killer feature
● Importance of “eating your own dogfood”

Using Python for Academic Projects
● Advantages:

– Core language is relatively compact, with excellent documentation
– Relatively easy to find developers
– Strong, well-developed environment of GUI toolkits, installers, etc.
– Decent performance out of the box, with some ability to optimize

● Disadvantages:

– Out-of-box performance often too slow; optimization often difficult
– Bit rot of external libraries (Windows 10 is especially problematic)
– Package distribution is a mess, as is associated documentation
– Standard library not compact; churn is too rapid to keep up with

for part-time developer
– Introductory and intermediate dead-tree documentation is lousy
– Online signal-to-noise ratio is low
– Community too insular; overly concerned with “idiomatic Python”

Violating Spolsky’s Rule #1: “Never
rewrite code from scratch”

● Issues with Python:
– Performance
– Maintenance and distribution
– Rapidly expanding ecosystem; falling signal-to-noise ratio
– Not fun!

● Why OCaml? (and why not Haskell?)
– Compact, stable language with clear syntax
– Small, highly-curated standard library
– Small community; very high signal-to-noise ratio
– Practical multiparadigmatic language
– http://roscidus.com/blog/blog/2014/06/06/python-to-ocaml

-retrospective/
– Fun!

http://roscidus.com/blog/blog/2014/06/06/python-to-ocaml-retrospective/
http://roscidus.com/blog/blog/2014/06/06/python-to-ocaml-retrospective/

● Easier to reason about code

– Higher level of abstraction
– State changes eliminated/restricted to individual functions
– Eliminates many mundane errors; reduces need for testing
– Compact language
– Small ecosystem: relatively few resources and documentation, but high quality
– Tuareg mode and Merlin

● OCaml’s type system

– Eliminates many classes of errors
– Encourages explicit design; discourages programming-by-coincidence
– Pattern matching forces one to think about and address entire domain

● Thinking in terms of types is revelatory

– Clarifies dependencies within the program
– Clarifies how different aspects of the program interact with one another
– QCA algorithms are fundamentally recursive
– Have solved a number of outstanding problems in QCA

Initial Benefits of Functional
Programming and OCaml

Software Architecture
“The general tendency is to over-design the second system”

Calibrate data Conduct analysis
Interrogate results
Assess robustness

Basic QCA software workflow

Three discrete-but-interconnected components

Data editor/
viewer

Analytic
toolkit

Visualizer

T
ig

ht
er

 c
ou

pl
in

g
Looser couplin g

Shared libraries

Software Architecture

Data editor/
viewer

GUI spreadsheet-like interface

● Import, create, edit, and calibrate data

– “Be liberal in what you accept, and
conservative in what you send.”

– Fuzzy set calculations
– Doman-specific operations

● Select data for analysis

– Selection of conditions
– Subset data via Boolean expression

● Visualize data

Software Architecture

Analytic
toolkit

GUI and CLI Interfaces
● Is essentially Kirq (GUI) and acq (CLI)

integrated into a single application

– Keeps GUI simple and user-friendly
– Easier to add new features to CLI

● GUI provides core analytic functions,
plus session history

● CLI interface provides advanced
analytic functions, including results
interrogation and robustness tests

● CLI interface also embedded as CUI
into GUI to permit advanced analysis
and provide access to new features

Software Architecture

Visualizer

GUI and CLI, plus web-frontend
● Focus on small & medium-N data sets
● Standardize inputs; automatically

convert between various QCA objects
● Invoke various backends (e.g., TikZ or

GnuPlot) as needed; invisible to user
● Plug-in architecture

– Relatively easy to add/update
visualizations

– Register available visualizations on startup
– Specify input, output, and required

parameters
– Generate backend code

Software Architecture

Visualizer

QCAViz Workflow
Input
Serialized representations of QCA object(s)
(Calibrated data, truth table, and/or
consistency/coverage solutions)

↓
Pre-processing
Validation, convert to appropriate type, collect
user-specified parameters, etc

↓
Generate backend code
Hand off to plug-in script for code generation
(GnuPlot, GraphViz, TikZ, etc)

↓
Post-processing

↓
Output:
● Render image, or
● Convert and save to SVG, EPS, etc, or
● Output raw code for producing image

Unresolved Issues

Data editor/
viewer

Analytic
toolkit

Visualizer

● Choice of GUI toolkit
● Communication among data

editor, analytic toolkit, and
visualizer

● For analytic toolkit, interface
(if any) between GUI and CUI

● Do I really need to build a data
editor?

● Should the editor be developed
as a standalone application?

● Is this a second system?
S

ha red l i bra rie s

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

