Visualization Options for QCA

Claude Rubinson University of Houston–Downtown rubinsonc@uhd.edu http://grundrisse.org/qca/

QCA Doctoral Courses at 2nd International QCA Summer Workshops Antwerp Management School Antwerp, Belgium May 22, 2019

Outline

- I. Start-up reading of 10–12 minutes:
 a) pages 28-31 of "Presenting QCA"
 b) marked section of *The Comparative Method*
 - c) page 53 of Visual Explanations
 d) page 183 of The Visual Display of Quantitative Information
- II. What we might visualize, and why
- III. Software for creating visualizations
- IV. Using visualization to introduce QCA
- V. Survey of visualizations

Two Uses for Visualization

- Visual analysis seeks to *discover* relationships among/between observations and conditions.
 - Audience is yourself; what can visualization reveal to you that tabular output misses?
- Presentation graphics are used to convey our findings to others. They are fundamentally rhetorical:
 - What information do you wish to highlight?
 - What story do you want to tell?
 - Two different audiences: those who know QCA well and those who don't

Objects in a QCA Analysis

- Calibrated data sets,
- Truth tables
- Consistency/coverage solutions

Goals of QCA Visualization

- Present superset/subset relationships
- Preserve case holism and diversity
- Clarify configurations
- Convey the range of solution complexity

Introducing QCA to a New Audience

- Use Venn/Euler diagrams; people know and like them
- 2x2 table are effective, especially when audience has a methodological background
- Be aware that XY plots can be confusing, especially when audience has a strong statistical background
- Boolean expressions are really helpful for highlighting QCA's distinctiveness
 - but consider alternatives to [*, +] notation:
 - -[&,|]
 - write out "and" and "or"

QCA as the Study of Invariance

- Definition: Certain aspects of cases tend to co-occur.
 - Religious fundamentalists tend to be politically conservative.

QCA as the Study of Invariance

- Definition: Certain aspects of cases tend to co-occur.
 - HIV causes AIDS

Set of people who are HIV-negative

QCA as the Study of Invariance

- Definition: Certain aspects of cases tend to co-occur.
 - HIV causes AIDS

Set of people who are HIV-positive

Set of people with AIDS

Assessing Sufficient Conditions

 Coverage measures the relative "importance" of each solution

U.S., have only attempted cross a few times and felt that their last crossing experience was very dangerous (X_2)

Assessing Sufficient Conditions

 Coverage measures the relative "importance" of each solution

was very dangerous (X_2)

(Too) Many Software Options

- Vector graphics (SVG, EPS, PS) permit arbitrary resizing and offer publication quality.
 - Avoid raster graphics (most formats, e.g., BMP, JPEG, PNG)
 - What about PDF?
- Vector graphics editors
 - Inkscape, Adobe Illustrator, LibreOffice, MS Office
- Diagram editors
 - Dia, xfig, MS Visio
- Languages
 - TikZ, GraphViz, gnuplot
 - R: SetMethods, Venn, ggplot2, lattice, etc.
 - programming language of your choice
- QCAViz suite under development
 - A good visualization usually requires manual intervention

2x2 Tables and XY Plots

	National Literacy Rate (LitCr)	
	Not High	High
Democracy Survival	— n=0	BE, CZ, FI, FR, IE, NL, SE, UK <i>n=</i> 8
Democracy Breakdown	ES, GR, IT, PT, RO <i>n</i> =5	AT, DE, EE, HU, PL <i>n=</i> 5

- Easy to construct
- Familiar and accessible
- Must explain interpretation of necessity and sufficiency

Fiss Configuration Charts

- Displays all configurations and how they relate
- Simultaneously present multiple solutions
- Order of configurations is up to researcher; grouping by core conditions is just one option
- Can replace con/cov tables
- Web app: http://grundrisse.org/qca/ demo/

Solution consistency: 0.93 Solution coverage: 0.22

Core/contributory condition present Core/contributory condition absent

Bivariate (biconditional) analysis: Crossing a fuzzy-set with a crisp-set

Rank-order plot

Dot plot

Use radar charts to compare *shapes of observations*

Also see Meuer, et. al. (2015) who use radar charts to compare configurations by aggregating (e.g., min, mean, max) across observations.

Use star charts to compare *shapes of recipes*

(a) Favorable family situation (Configuration 1)

(b) Not-low AFQT score and high parental income (Configurations 2 & 3)

(c) Not-low AFQT score and college-educated (Configurations 4 & 5)

Branching diagrams tell a story

Superset/subset Relationships

3-set Venn

4-set Venn

5-set Venn

5 set Edwards-Venn

Superset/subset Relationships

- Venn/Euler diagrams are familiar and easy to interpret, but:
 - Low information density
 - Interpretability decreases as intersections increase
 - Difficult to convey proportionality
 - Programmatically generating area-proportional Euler diagrams with more than 3 sets is an unsolved problem
- Alternatives:
 - Hierarchical graphs
 - Force-directed graphs
 - Galois lattices
 - Linear diagrams

Hierarchical graphs reveal superset/ DUTNS subset relationships among DE configurations

Force-directed graphs map *logical distances* of conditions/observations

Galois lattices reveal the *duality* of conditions and observations

- Easy to construct with software (but not by hand)
- Not intuitive; can be difficult to interpret. Will need to interpret for reader.
- Presents superset/subset relationships simultaneously
- Particularly well-suited for depicting truth tables (optionally including remainders)

Linear diagrams are improved Venn/Euler diagrams

